§ 25.103 Stall speed. (a) The reference stall speed, V_{SR} , is a calibrated airspeed defined by the applicant. V_{SR} may not be less than a 1-g stall speed. V_{SR} is expressed as: $$V_{SR} \ge \frac{V_{CL_{MAX}}}{\sqrt{n_{ZW}}}$$ V_{CLMAX} = Calibrated airspeed obtained when the load factor-corrected lift coefficient $$\left(\frac{n_{ZW}W}{qS}\right)$$ is first a maximum during the maneuver prescribed in paragraph (c) of this section. In addition, when the maneuver is limited by a device that abruptly pushes the nose down at a selected angle of attack (e.g., a stick pusher), $V_{\text{CL}_{\text{MAX}}}$ may not be less than the speed existing at the instant the device operates; n_{ZW} = Load factor normal to the flight path at V_{CLMAX} W = Airplane gross weight; S = Aerodynamic reference wing area; and q = Dynamic pressure. - (b) V_{CLMAX} is determined with: - (1) Engines idling, or, if that resultant thrust causes an appreciable decrease in stall speed, not more than zero thrust at the stall speed; - (2) Propeller pitch controls (if applicable) in the takeoff position; - (3) The airplane in other respects (such as flaps, landing gear, and ice accretions) in the condition existing in the test or performance standard in which V_{SR} is being used; - (4) The weight used when V_{SR} is being used as a factor to determine compliance with a required performance standard; - (5) The center of gravity position that results in the highest value of reference stall speed; and - (6) The airplane trimmed for straight flight at a speed selected by the applicant, but not less than $1.13V_{SR}$ and not greater than $1.3V_{SR}$. - (c) Starting from the stabilized trim condition, apply the longitudinal control to decelerate the airplane so that the speed reduction does not exceed one knot per second. - (d) In addition to the requirements of paragraph (a) of this section, when a device that abruptly pushes the nose down at a selected angle of attack (e.g., a stick pusher) is installed, the reference stall speed, V_{SR}, may not be less than 2 knots or 2 percent, whichever is greater, above the speed at which the device operates. [Doc. No. 28404, 67 FR 70825, Nov. 26, 2002, as amended by Amdt. 25-121, 72 FR 44665, Aug. 8, ## § 25.105 Takeoff. - (a) The takeoff speeds prescribed by §25.107, the accelerate-stop distance prescribed by §25.109, the takeoff path prescribed by §25.111, the takeoff distance and takeoff run prescribed by §25.113, and the net takeoff flight path prescribed by §25.115, must be determined in the selected configuration for takeoff at each weight, altitude, and ambient temperature within the operational limits selected by the applicant— - (1) In non-icing conditions; and - (2) In icing conditions, if in the configuration of §25.121(b) with the takeoff ice accretion defined in appendix C: - (i) The stall speed at maximum takeoff weight exceeds that in non-icing conditions by more than the greater of 3 knots CAS or 3 percent of V_{SR}; or - (ii) The degradation of the gradient of climb determined in accordance with §25.121(b) is greater than one-half of the applicable actual-to-net takeoff flight path gradient reduction defined in §25.115(b). - (b) No takeoff made to determine the data required by this section may require exceptional piloting skill or alertness. - (c) The takeoff data must be based on— - (1) In the case of land planes and amphibians: - (i) Smooth, dry and wet, hard-surfaced runways; and - (ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways. - (2) Smooth water, in the case of seaplanes and amphibians; and - (3) Smooth, dry snow, in the case of skiplanes. - (d) The takeoff data must include, within the established operational limits of the airplane, the following operational correction factors: